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Dynamic Response of Inhomogeneous Fermi Systems

Sudip Chakravarty, Martin B. Fogel and Walter Kohn
Department of Physics, University of California San Diego

La Jolla, California 92093

ABSTRACT

This paper presents a theory of the linear density response

to an external time dependent scalar potential for a Fermi

.system whose unperturbed dgnsity varies slowly on ; scale
L > p;l, where Pp is a characteristic Fermi momentum.
Simple local density functional response theory is valid
except in a region of small q and w (wave number and fre-
quency of the perturbation). For this region we have

worked out a generalization, to the case of inhomogeneous
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This paper deals with Fermi systems at zero temperature whose
unperturbed density, “0(5)' varies slowly on a scale £ >> p;l, where
PF is a typical local Fermi momentum. We wish to calculate the
linear density response of such a system to an external scalar

potential, vf(f,t). which we write as

v,80) = ==, [ vi(q.we

1(3-5 - wt)
(2m)*

dq dw (1)
For the time being we consider only neutral systems with short range
forces; extension ﬁo charged systems poses no significant problems.

For several (overlapping) regimes of q and w the necessary theory

is already available. In view of the slow spatial variation of no(r),
a plausible ansatz for the density response is the local density

approximation

n,(z,0) = [ x (e-r', w; 0 (x)) v,°c’, w) dar', (2)

where x(s—s', w; no) is the dynamic response function of a system

of uniform density, n,. This ansatz is in fact valia under the
following circumstances:
(I) w<< Vrd (VF = Fermi velocity). In this case X is to a
good approximation the static X, which is known to have a short range
of the order of p;1 or of the range of the forces (region (I) in Fig. 1).
(I1) w > vFIE. Again X has a.short range of the order of vplw or
P;l (region (II) in Fig. 1).
(1LII) q >> 2-1. Here q denotes a characteristic wave-number of v,e.

- '
The effective range of X is no larger thanm q . (region (III) in Fig. 1;!




It can be seen from Fig. 1, that there is a region, R, shown
enclosed by heavy lines, which is not covered by the above three

regions. Here we develop a theory which is valid in the following regime,

(IV) q << Pps W << PFz (region (IV) in Fig. 1, shown enclosed by
dashed lines). This is the region of validity of the classical

(2) If 2 is large enough, region (IV)

Landau theory of Fermi liquids.
incl;des R, and therefore our theory compliments the local density
approximation (2).

Our theory is the generalization of Landau theory for systems
of slowly varying density. Since the Landau theory for homogeneous
systems is valid for long wavelength perturbation, it is plausible
that it can be extended to inhomogeneous systems whose unperturbed
dengity varies on a scale £ large compared to p;l.

For a homogeneous system, subject go an external potential
vle(E,t), the Landau transport equation for the quasiparticle dis-
tribution function, n‘(g,z,t), is obtained from the classical Hamilton's
equations using the effective Hamiltonian

H(p,r,t) = e(p) + v,%(r,t) +2 fopr M('HIt) . 3)
: p' ==

Spin indices have been suppressed. Here

2 p 2 |
ep) = 2 - L (%)
5 2m* 2m*

is the one particle energy and the last term arises from short range

quasi-particle interactions. Our generalization for an inhomogeneous




system is

H(p,r,t) = e(p,r) + vxe(z,t) + jg fpp' (r) n (p',x,t)
pt X

~

where

P
2m*(r) 2m*(r)

2 ppz(g)

e(p,r) (6)

fpp,(r), m*(r) and pF(r) are equal to the homogeneous Fermi liquid

~a

parameters fpp" m* apd Pp evaluated for the local demsity, no(E).

This‘ansatz ;; in the spirit of local density functional theory(’)

where all local physical quantities are determined by the local density.
The single particle energy e(g,z) can be derived from the theory

of single particle properties of the inhomogeneous eléctron gas(“).

It can also be understood as follows. The local wave number of a

quasiparticle of vanishing excitation energy is Equal to
<
pp(e) = [3rn o] )

(This relationship is unaffected by interactions). In a system in
equilibrium, quasiparticles of vanishing excitation energy must have
the same single particle energy at any two points r, and r,. In view of
(7) this is correctly described by the expression (6). Further, at a
given r, the momentum dependence of € for small p -~ pr(s) must be
given by the local value of m*(s) as is th; case for our expression
(6).

The external perturbation, v € and the interaction term of H

are the same as in the homogeneous Landau theory, except that,




A Ay

because of the short range of the interactionm, fpp.(r), is not a

~a

constant but corresponds to the local density.

The collisionless transport equation is

31‘ Vn+r°V 50 (8)

where p and r are determined by Hamilton's equations,

P Vs Rizes VB H 9)
We write
n(goftt) » no(gof) + nl(g’fat) ’ (10)

substitute (9) into (8) and linearize: .

;1 n (p,r t) + V e(p,r) V. n (p,r t) - v. s(p,r) V n (p,r t)

= Vo 0, (1) -V, v, (r BV n (p,1)* Y. 2 pp' () m(@',r,t)

-~ ~~

L}

- V5 no(g,f)'vp ;g fgg.(z) “1(2"£'t) . (11)

This integro-differential equation can be solved by a variety of
techniques. Here we regard it as describing the flow of classical
particles under the action of the Hamiltonian e(g,s) and with a (self-
consistent) source Sl(g,f,t) equal to the right hand side. Consequently
we are led to define the folloviné Green's function

»I,t"))

St 1 PT IR L 0K
§(r' - Q (p,r,t'")) o(t-t'") (12)

-~
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where Q-E describe the trajectory of a particle moving under the
action of €(P,Q), which was created at time t' at r' with momentum

g' and arrives at r with momentum p at time t. The trajectories are

-~

given by
B = -V eQ), § =V, e?,Q) (13a)
and
B =, Q) = x (13) |

The formal solution of Eq. (11) is then given by

n,(p,r,t) = &,(p,1,t) + [G(p,r;p',r';e-t')S(p',r",t")dp'dr" at’

(14)

where 51 is a solution of the homogeneous equation. If we now consider
a single time Fourier component of vf, and the corresponding density

change

5 -yt 1(w-in)t
vi(r,t) = v (r,u0) e o e
nj(gtzgt) = "z(E»E-U) ei(w-in)r,

then the equation (14) can be reduced to

n, (p,r,w) = -6(&(2.5)) Sl(g,g,uﬁ -mesl(g',s'.w) G(p,r;p'r',w) dg'dz{] 5 %
(16)

where

S, (@1 w) = vilr,w) + & fppr @ R'r W) an




(2]
G(p,rip',r';w) = [ ds s §(p' - P(p ,r ,8))6(r' - Q (p,r,8)) .

(18)

61 has been omitted since, except exactly at resonance, the homogen-
eous transport equation has no solution.

Equation (16) is an inhomogeneous integral equation for n,(g,f,w)
whose kernel G, Eq. (18), can be determined by calculating the
classical trajectorieg, Eq. (13). From “1(2’5'“) the induced particle

density is given by g

n (r,w) Ezn,(g,g.m) . 19)
~ .

o 1

To treat charged systems one merely makes the réplacement
n,(r',0)
e C13%
Vle(fgw) > Vlt(f,w) = VI(E,N) + I——— dE' 'y = (20)
|z-z*|
the total scalar potential.

The exact linear response function, X, is defined by the equation
n,(r,w) = / x(r,r'5w) vlt(g'.m) dr' (21)

where nl(r,w) is the exact induced particle density. Consider now

the following approximate expression:
' H '
x(r,r'iw) = x (r-r';w; n (r))

+x LI

(E’

"

T H [no(g")] )

- x M

r=r

3wy o (r)) ; (22)




here xH is the response function of a homogeneous system of density
L XLH is the same quantity calculated from Landau theory; and xLI
is the response function calculated in the present extension of Landau
theory to inhomogeneous systems. Provided £ is large enough, this
expression becomes arbitrarily accurate for all external perturbations
vle(z,w) regardless of the value of w and the characteristic wave
numbers q. For, in regions (II) and (III), the last two terms cancel
and x“ becomes an accurate representation; and‘in the remaining region
(@ < 2! and w < vFE-l), the first and last term cancel and xPI becomes
an accurate representation.

The expression (22) defines the response function as a functional
of the density: xH is determined by n, and theoretical approximations

(s); XLH

to it are available is well known in terms of the density-

OR xLI

dependent Landau parameters ; and ‘can be calculated with the

same Landau parameters by our theory. Thus the expression (22) can

e

E be regarded as a dynamic response function in density functional theory.
For a non-interacting one-dimensional system, Eq. (16) can be
solved and leads to the following result for X:
1 §(x-x') iw iwt (x,x") i

(23) i

1 X(x,x"',w) = - PF(X) + ——PF(X)PF(X') e |

3 where t(x,x') is the time of transit between positions x and x'. This

formula has been checked by an independent calculation using the BWK

approximation. It is interesting to note that for w = 0, this ) is

strictly local; for w << ved the second term is effectively small

B e —



compared to the first but of long range; and for larger w the second
term increases and becomes effectively of shorter range.
Extensions of this theory to other forms of external perturba-
4 tion are under study.
Although strictly speaking our theory applies only to systems
of very slow spatial variation, it should be interesting to apply
it to real systems whose density varies on an atomic scale.

This work has been supported in part by the National Science

Foundation and the Office of Naval Research.
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FIGURE CAPTION

Region R is enclosed by heavy lines and region (IV) by the dashed
lines. Local density theory is valid in regions (I), (II) and (III)
but fails in region R; present'theory is valid in region (IV). a is

a numerical constant, large compared to unity; and B is a constant small

compared to unity.
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